"The Influence of Behavioral Finance on Investment Decision-Making: Exploring Psychological Factors in Financial Markets"

Dr. Sreedhara Ramesh Chandra.

M.Com, MBA, M.Phil,PhD. Associate professor, Department of MBA, Atria Institute of Technology, AGS Colony, Anand Nagar, Hebbal, Bengalore- 560024

Email: rcs19661@gmail.com ORCID: 0000-0002-0014-6240 Citation: SR Chandra

Dr.SK.Dhastagiri Bhasha,

MBA.,Ph.D, Associate Professor, Department of MBA, Prakasam Engineering College, Kandukur. Email ID: dastagirishaik5@gmail.com.

ABSTRACT

This research examines the profound influence of behavioural finance on investment decisions, with a specific emphasis on the complex interaction that exists between psychological variables and financial selections. The domain of behavioural finance has become an indispensable element in understanding the ways in which real-world investor conduct differs from the idealised rational models posited in conventional finance theories. The primary objective of this research paper is to conduct an exhaustive examination of the substantial impact that psychological biases and emotive influences have on investment decisions. The study investigates the foundational fallacies that influence decision-making processes, such as confirmation bias, overconfidence, loss aversion, and herding behaviour, by integrating perspectives from economics and psychology. The study employs empirical evidence and case studies to underscore the practical consequences of these biases on financial markets and investment strategies. This study investigates the manner in which these prejudices become evident in the actions of investors and how they influence the administration of investment portfolios, the perception of risk, and market inefficiencies. Moreover, the implications for individual investors, fund administrators, and the wider financial landscape are examined in the paper.

Keywords: Herding Behavior, Market Inefficiencies, Risk Perception, Emotions and Investor Behavior, Regret Aversion

Theoretical background:

Conventional economic theories have long assumed that investors in the finance sector behave rationally, taking into account all available information when making decisions that would maximise their financial returns. But the truth is far more nuanced. The idea that people behave solely rationally has been called into question by the rise of behavioural finance, which has highlighted the important impact of psychological variables on investing decision-making. The goal of behavioural finance research is to comprehend how social, emotional, and cognitive biases influence financial decisions. It investigates how human conduct deviates from the logical decision-making process suggested by conventional financial theory. The field of behavioural finance aims to clarify the different illogical patterns that influence investing decisions by fusing knowledge from psychology and economics. The goal of this study is to examine the complex relationship between behavioural finance and investing choices. It is especially concerned with disentangling the complex network of psychological influences that significantly impact financial decisions. Important components of this research include biases including confirmation bias, overconfidence, loss aversion, swarming

behaviour, and many more. This research aims to investigate the consequences of these psychological biases on financial markets and investing strategies in practice. It attempts to show how these biases appear in investor behaviour, deviating from logical decision-making processes and, as a result, affecting market dynamics using empirical data and case studies. It is crucial for investors, fund managers, and market analysts to comprehend the psychological aspects that influence investing decisions. It makes it necessary to re-evaluate financial strategies, see risk from an alternative angle, and take action to mitigate the impact of these biases. This study explores the field of behavioural finance in an effort to better understand the practical effects of psychological variables on investing decisions. In addition, it aims to offer useful perspectives and methods that might help lessen the effects of these biases and promote more knowledgeable, logical, and successful investing choices in a constantly changing financial environment.

Understanding the differences between the presumptions of conventional finance theories and how individuals really make financial decisions is the foundation of the theoretical framework of behavioural finance. To account for these variations, it combines a number of psychological theories, biases, and heuristics. The following are the main elements of the behavioural finance theoretical framework:

- Behavioral finance is a field that combines psychology and economics to understand how human cognitive biases and emotions affect financial decision-making. The main elements of the behavioral finance theoretical framework include:
- Heuristics: Human beings often rely on mental shortcuts or rules of thumb, known as heuristics, to make decisions quickly and efficiently. These heuristics can lead to systematic biases in judgment and decisionmaking.
- ➤ Biases: Behavioral finance identifies numerous biases that influence financial decisions. Some common biases include:
- Overconfidence Bias: Individuals tend to overestimate their own abilities and knowledge, leading them to take excessive risks.
- > Loss Aversion: People tend to strongly prefer avoiding losses to acquiring gains of the same magnitude, leading to risk aversion.
- Anchoring: Individuals rely heavily on the first piece of information they receive (the "anchor") when making decisions.
- Herding Behavior: People often mimic the actions of others, even if those actions are not rational, leading to market bubbles and crashes.
- Prospect Theory: Developed by Daniel Kahneman and Amos Tversky, prospect theory describes how people make decisions under uncertainty. It suggests that individuals evaluate potential losses and gains relative to a reference point and are more sensitive to losses than gains (loss aversion).
- Framing: The way information is presented (or framed) can significantly influence decision-making. People tend to make different choices depending on how the options are presented, even if the options are objectively the same.
- Mental Accounting: Individuals categorize their financial activities into separate mental accounts, which can lead to irrational decision-making. For example, people may treat windfall gains differently from earned income and allocate them to different purposes.

- Regret Aversion: People often make decisions to avoid potential regret in the future, which can lead to suboptimal outcomes. Fear of regret can cause individuals to avoid making decisions altogether or stick with the status quo.
- ➤ Behavioral Biases in Market Participants: Behavioral finance also studies how these biases manifest in financial markets and affect asset prices, trading volume, and market efficiency. For example, the presence of biased investors can lead to mispricing of assets and deviations from fundamental values.

Understanding these elements of the behavioral finance framework can provide insights into why individuals and markets sometimes behave irrationally and can help investors and policymakers make more informed decisions.

Literature review:

The field of behavioral finance has garnered significant attention in recent years as scholars and practitioners delve into the intricate relationship between human psychology and financial decision-making. This review synthesizes key findings from various studies, shedding light on the pervasive influence of behavioral biases and proposing strategies to counteract their effects.

- ➤ Robert Hudson (2023) highlights the burgeoning intersection of behavioral finance and ethics, a promising area of research that was a focal point at a recent conference. While ethical considerations were prominent, other papers explored diverse aspects of behavioral finance, emphasizing its multidimensional nature.
- ➤ Ahmed Bouteska and Mehdi Mili (2022) investigate the interplay among investor sentiment, valuation uncertainty, and analyst recommendation decisions within U.S. firms. Contrary to prior evidence, they find that valuation uncertainty moderates the impact of investor sentiment on stock market reactions to analyst recommendations, underscoring the complexity of these dynamics.
- Qingzhong Ma, David Whidbee, and Wei Zhang (2022) uncover evidence suggesting that the asset growth anomaly is partly attributable to investors' behavioral biases. Their analysis reveals that stocks favored by behaviorally biased investors exhibit stronger anomalies, indicating the influence of psychological factors on market outcomes.
- Dhruva Jyoti Sharma and Dr. Nripendra Narayan Sarma (2022) present a comprehensive framework for understanding behavioral finance, synthesizing existing literature and proposing avenues for future research. They emphasize the importance of integrating behavioral insights into financial studies to enrich our understanding of decision-making processes.
- ➤ Kruti P. Bhatt's study (2018) identifies anchoring bias and overconfidence bias as the most prevalent among investors, underscoring the pervasive impact of these biases on financial decision-making. Other biases, such as availability bias and herd behavior, also exert significant influence to varying degrees.
- A.Pankajam's research (2017) employs canonical correlation analysis to elucidate the strong relationship between behavioral factors and investment decision-making behaviors. The findings underscore the interconnectedness of psychological factors and investment choices.
- Amlan Jyoti Sharma (2016) emphasizes the evolving nature of behavioral finance, suggesting that while it provides valuable insights, further refinement and empirical validation are needed to establish it as a robust theoretical framework.

- Mitroi and Oproiu (2014) demonstrate a positive correlation between emotional intelligence and investment performance, highlighting the pivotal role of psychological factors in financial decision-making.
- Bikas et al. (2013) emphasize the significance of psychological factors in investment decisions, underscoring the need to consider human behavior alongside market information.

In sum, behavioral finance offers valuable insights into the complexities of financial decision-making, highlighting the pervasive influence of psychological biases. By integrating behavioral insights into research and practice, scholars and practitioners can enhance our understanding of financial markets and improve decision-making processes.

OBJECTIVES:

- Assessing the Influence of Biases and Heuristics on Investment Decision-Making
- > Evaluating the Impact of Herd Behavior on Investment Decision-Making
- Examining the Effects of Market Inefficiencies on Investment Decision-Making
- > Assessing the Influence of Risk Perception on Investment Decision-Making
- > Evaluating the Impact of Emotions and Investor Behavior on Investment Decision-Making
- Examining the Effects of Regret Aversion on Investment Decision-Making
- > Investigating the Impact of Biases in Portfolio Management on Investment Decision-Making

Data sources and Research methodology:

Primary Data Sources:

- > Surveys and Questionnaires: Researchers commonly utilize surveys to directly collect data from individuals about their investment decisions, risk perceptions, and behavioral biases. These surveys are customized to extract specific information pertinent to the research objectives.
- > Experiments: Controlled experiments are employed to observe and analyze decision-making behaviors in controlled settings. These experiments often involve simulated trading scenarios or decision tasks crafted to elicit particular biases or behaviors.
- ➤ Interviews and Focus Groups: Researchers may opt for interviews or focus group discussions with investors, financial experts, or individuals to gather qualitative insights into their investment behaviors, attitudes, and decision-making processes..

Secondary Data Sources:

- Published Research Papers and Journals: Secondary sources in behavioral finance encompass academic papers, articles, and studies previously published in scholarly journals. These sources often conduct analyses of existing data or literature reviews on various behavioral finance topics.
- ➤ **Historical Market Data**: Financial databases and repositories provide access to historical market data, such as stock prices, trading volumes, and market indices. Analysts leverage this information to examine market trends, anomalies, and the influence of behavioral biases on asset prices.
- Government and Financial Institution Reports: Reports from entities such as the Federal Reserve, SEC, or World Bank offer valuable economic and financial data, including market indicators, economic trends, and regulatory insights.

➤ Books and Texts: Behavioral finance literature, including works authored by leading experts in the field, serve as secondary sources compiling comprehensive knowledge and insights about diverse behavioral biases, decision-making processes, and their implications for investment decisions

HYPOTHESIS

Section 1: Biases and Heuristics

- ➤ Null Hypothesis (H0): There is a significant positive impact of Biases and Heuristics on Investment decision-making.
- Alternative Hypothesis (H1): There is no significant positive impact of Biases and Heuristics on Investment decision-making.

Section 2: Herd Behavior

- > Null Hypothesis (H0): There is a significant positive impact of Herd Behavior on Investment decision-making.
- Alternative Hypothesis (H1): There is no significant positive impact of Herd Behavior on Investment decision-making.

Section 3: Market Inefficiencies

- Null Hypothesis (H0): There is a significant positive impact of Market Inefficiencies on Investment decision-making.
- Alternative Hypothesis (H1): There is no significant positive impact of Market Inefficiencies on Investment decision-making.

Section 4: Risk Perception

- Null Hypothesis (H0): There is a significant positive impact of Risk Perception on Investment decision-making.
- Alternative Hypothesis (H1): There is no significant positive impact of Risk Perception on Investment decision-making.

Section 5: Emotions and Investor Behavior

- > Null Hypothesis (H0): There is a significant positive impact of Emotions and Investor Behavior on Investment decision-making.
- Alternative Hypothesis (H1): There is no significant positive impact of Emotions and Investor Behavior on Investment decision-making.

Section 6: Regret Aversion

- Null Hypothesis (H0): There is a significant positive impact of Regret Aversion on Investment decision-making.
- Alternative Hypothesis (H1): There is no significant positive impact of Regret Aversion on Investment decision-making.

Section 7: Biases in Portfolio Management

- Null Hypothesis (H0): There is a significant positive impact of Biases in Portfolio Management on Investment decision-making.
- Alternative Hypothesis (H1): There is no significant positive impact of Biases in Portfolio Management on Investment decision-making.

Methodology and Data Collection:

In this research, careful consideration was given to designing survey questions aimed at identifying the most influential variables affecting behavioral finance practices and measuring the study variables being applied the convenience sampling and conducted online survey in the city of Vizag (Visakhapattanam) of Andhra Pradesh, India, using 1627

European Economic Letters

ISSN 2323-5233

Vol 14, Issue 1 (2024)

https://doi.org/10.52783/eel.v14i1.1222

http://eelet.org.uk

Google form distributed to 700 respondents and got 554 responses. To gauge respondents' perceptions, a five-point

Likert scale was utilized as the measurement tool, with 1 denoting "strongly disagree" and 5 indicating "strongly agree."

The Likert scale was chosen for its effectiveness in assessing the degree of agreement or disagreement among

respondents. Such inquiries are invaluable for gaining insights into respondents' opinions and sentiments on a specific

subject. Additionally, the Likert scale offers the advantage of standardization, facilitating the statistical analysis of the

data collected from these questions.

Questionnaire Pre-Testing:

Before being deployed in the actual research, the questionnaire underwent a thorough pre-testing phase. The purpose of

this pre-test was to identify and rectify any potential technical issues or ambiguities in the questionnaire. Ensuring that

the questions' wording was appropriate for the employees was a key objective of the pre-test.

Benefit of Third-Party Perspective:

To bolster the quality and clarity of the questionnaire, it underwent review by third-party individuals not directly

involved in the main survey. This external input served to minimize the likelihood of errors and oversights. Adjustments

to certain questions were made based on the feedback received, aimed at enhancing aspects such as wording, content,

and format.

This rigorous approach to questionnaire design and pre-testing plays a crucial role in enhancing the reliability and

validity of the collected data, thereby fortifying the overall integrity of the research findings.

Data Analysis Procedure

The questionnaire comprises two sections: The first part involves inquiries regarding respondents' demographics. In the

second segment, respondents express their views on the correlation between elements of behavioral finance and

customer perception and purchasing patterns. Using a Likert scale ranging from 1 to 5, where 1 indicates strong

agreement and 5 signifies strong disagreement, respondents rate the claims.

DATA ANALYSIS AND INTERPRETATION

RESULTS AND DISCUSSION.

The data was analyzed using SPSS 23. Exploratory factor analysis (EFA) was employed to demonstrate concept

validity, while Cronbach's alpha was utilized to assess internal consistency. Regression analysis was conducted to

investigate potential relationships between the variables. To confirm constructs in the EFA, Principal Component

Analysis (PCA) was applied, as recommended by Hair et al. (1998). Factor loadings equal to or greater than 0.30 are

considered to meet the minimum threshold, while loadings exceeding 0.40 and 0.50 are deemed more significant. The

study's cutoff point for factor loading was set at 0.50. The results of the factor analysis are presented in Table 2. The

Kaiser-Meyer-Olkin (KMO) measure assessed the suitability of the data for factor analysis, with values between 0.5 and

1.0 indicating favorable conditions. Bartlett's test of sphericity was used to determine the level of interdependency

among variables. Significance levels of the test were calculated, with values below 0.05 indicating significant

correlations between variables. A p-value exceeding 0.10 would suggest that factor analysis may not be appropriate for

1628

the dataset. All twenty-one items underwent validation for the final analysis, as no item had a loading value below 0.5, ensuring robustness in the analysis

Table 1: Results of Exploratory Factor Analysis										
Macro Variabl e	Micro Variable	Factor loading	KMO Measure of	Bartlett's Spher		Items confirmed	Items dropp	Cu m% of		
		S	Sample Adequac y (>0.5)		Sig. (<.10	comirmed	ed	load ing		
	Biases and Heuristics	.927	.563	211.430	.004	5	0	65.4 8		
	Herd Behavior	.897	.704	355.625	.000	6	0	79.5 36		
e-	Market Inefficiencies	.737	.642	309.165	.000	6	0	72.8 60		
BEHAV IOURA L FINAN	Risk Perception	.822	.628	120.772	.000	6	0	60.6 84		
CE	Emotions and Investor Behavior	.979	.691	1386.83 4	.000	6	0	90.46 7		
	Regret Aversion	.944	.591	121.272	.000	6	0	78.4		
	Biases in Portfolio Management	.873	.707	249.604	.000	6	0	73.88		

Reliability analysis:

Calculating Chronbach Alpha helped researchers assess the questionnaire's internal consistency and reliability. Nunally and Bernstein (1994) recommend adopting an alpha value as low as 0.60 for new scales, although a lower alpha value is acceptable. If not, it is common practise to impose the need of an internally consistent established scale with an alpha value of 0.70. The study's threshold value for Cronbach's alpha is 0.7.

Table 2: Results of the Reliability Examination

	Independent Variable	Cronbach Alpha
1		.731
	Biases and Heuristics	
2	Herd Behavior	.882
3	Market Inefficiencies	.802
4	Risk Perception	.667
5	Emotions and Investor Behavior	.947
6	Regret Aversion	.806
7	Biases in Portfolio Management	.756
Over	all Reliability of the Questionnaire	.801

Table 2s Cronbach's alpha values are over the cutoff value of 0.7, which is acceptable. With a Cronbach's alpha value of 0.801, the questionnaire's overall reliability is demonstrated.

Regression Analysis

Stepwise regression analysis is used to identify the predictor-criterion connection between the dependent and independent variables. A correlation between behavioural financefactors and Investment decision was investigated.

Results of Hypotheses Testing for Investment decision as Dependent Variable

A number of separate regression models are developed and tested for the Investment decision as dependent variable. 7 Behavioural finance factors i.e., Biases and Heuristics, Herd Behavior, Market Inefficiencies, Risk Perception, Emotions and Investor Behavior, Regret Aversion, Biases in Portfolio Management taken as independent variables in regression models with Investment decision as dependent variable as depicted in Figure 1.

According to the results of the step-wise regression analysis in above tables 7 factors (Biases and Heuristics, Herd Behavior , Market Inefficiencies, Risk Perception, Emotions and Investor Behavior, Regret Aversion, Biases in Portfolio Management) were found to be significant predictors of "Investment decision." Using the R square of 0.934, we can see that these 5 variables are capable of explaining "Investment decision" to the degree of 93.4 percent in the data in Table 3(a). According to Table 3(b), the "ANOVA results for the regression model are provided, demonstrating validity at the 95 percent confidence level." A brief overview of the corresponding coefficients .

Table 3(a) Model Summary

Model	R	R Square	Adjusted R	Std. Error of
			Square	the Estimate
1	.863ª	.744	.743	.355
2	.911 ^b	.830	.829	.290
3	.936°	.876	.874	.248
4	.955 ^d	.912	.910	.210
5	.962e	.926	.925	.192
6	.986°	.825	.874	.348

7	.925 ^d	.812	.810	.288

Table 3 (b) ANOVA

Model	l	Sum of	Df	Mean Square	F	Sig.
		Squares				
	Regression	87.776	1	87.776	696.150	.000 ^b
1	Residual	30.135	553	.126		
	Total	117.911	554			
	Regression	97.885	2	48.943	581.674	.000°
2	Residual	20.026	552	.084		
	Total	117.911	554			
	Regression	103.276	3	34.425	557.490	.000 ^d
3	Residual	14.635	551	.062		
	Total	117.911	554			
	Regression	107.488	4	26.872	608.429	.000e
4	Residual	10.423	550	.044		
	Total	117.911	554			
	Regression	109.232	5	21.846	591.557	.000f
5	Residual	8.679	549	.037		
	Total	117.911	554			
	Regression	102.132	6	22.678	581.508	.000 ⁱ
6	Residual	7.879	548	0.057		
	Total	110.011	554			
	Regression	113.114	7	21.546	595.667	.000
7	Residual	7.679	547	0.061		
	Total	120.793	554			

- a. Dependent Variable: Investment decision
- b. Predictors: (Constant), Biases and Heuristics, Herd Behavior, Market Inefficiencies, Risk Perception, Emotions and Investor Behavior, Regret Aversion, Biases in Portfolio Management

	Table 3 (c) Coefficients ^a									
Model		Unstandardized Coefficients		Standardized Coefficients		t	Sig.			
		В	Std. Error	Beta						
1	(Constant)	.498	.087			5.752	.000			
1	Biases and Heuristics	.800	.030		.863	26.385	.000			

	(Constant)	.517	.071		7.310	.000
2		.475	.039	.512	12.280	.000
	Biases and Heuristics Herd Behavior	.325	.030	.457	10.961	.000
				.437		
	(Constant)	.215	.069		3.124	.002
3	Biases and Heuristics	.440	.033	.475	13.217	.000
	Herd Behavior	.284	.026	.400	11.055	.000
	Market Inefficiencies	.183	.020	.231	9.343	.000
	(Constant)	.156	.058		2.663	.008
	Biases and Heuristics	.262	.034	.283	7.811	.000
4	Herd Behavior	.224	.023	.316	9.928	.000
	Market Inefficiencies	.171	.017	.216	10.310	.000
	Risk Perception	.271	.028	.328	9.765	.000
	(Constant)	.074	.055		1.358	.176
		.185	.033	.199	5.655	.000
	Biases and Heuristics	404	001	2.50	0.055	000
5	Herd Behavior	.191	.021	.268	8.965	.000
	Market Inefficiencies	.168	.015	.212	11.045	.000
	Risk Perception	.250	.026	.302	9.758	.000
	Emotions and Investor Behavior	.173	.025	.191	6.873	.000
	(Constant)	.074	.055		1.358	.176
	Biases and Heuristics	.185	.033	.199	5.655	.000
6	Herd Behavior	.325	.030	.457	10.961	.000
	Market Inefficiencies	.215	.069	.448	3.124	.002
	Risk Perception	.440	.033	.475	13.217	.000
	Emotions and Investor Behavior	.173	.025	.191	6.873	.000
	Regret Aversion	.183	.035	.185	5.783	.000
	(Constant)	.284	.026	.400	11.055	.000
		.183	.020	.231	9.343	.000
	Biases and Heuristics Herd Behavior	.156	.058		2.662	000
				200	2.663	.008
_	Market Inefficiencies	.362	.034	.283	7.711	.000
7	Risk Perception	.284	.026	.400	11.055	.000
	Emotions and Investor Behavior	.183	.020	.231	9.343	.000
	Regret Aversion	.156	.058	.331	2.663	.008
	Biases in Portfolio Management	.162	.024	.283	7.821	.000
a.	Dependent Variable: Investment deci	sion				

Test Results for Hypotheses

H y.N o.	Independent Variables	to	Dependent Variables	R- Squar e	Beta Coefficie nt	t-value	Sig Value	Status of Hypothes es
H1	Biases and Heuristics	\rightarrow	Investment decision		.138	4.583	0.076	Accepted
H2	Herd Behavior	\rightarrow	Investment decision	-	.212	7.437	0.003	Accepted
Н3	Market Inefficiencies	\rightarrow	Investment decision	0.935	.215	11.793	0.002	Accepted
H4	Risk Perception	\rightarrow	Investment decision		.265	8.771	0.011	Accepted
Н5	Emotions and Investor Behavior	\rightarrow	Investment decision	-	.197	7.379	0.016	Accepted
Н6	Regret Aversion	\rightarrow	Investment decision	1	.285	7.671	0.034	Accepted
Н7	Biases in Portfolio Management	\rightarrow	Investment decision		.135	5.329	0.0055	Accepted

CONCLUSION

The primary objective of this research was to deepen our comprehension of the assessment of behavioral finance aspects regarding investment decision-making. This study involved examining seven independent variables alongside one dependent variable. The findings of this research indicated that all seven dimensions of behavioral finance are significant predictors of "investment decision."

Potential for Future Research:

The field of behavioral finance is continually evolving, offering numerous promising avenues for future research. Some potential areas for further exploration and study in behavioral finance include: Integrating neuroscience with behavioral finance to gain a deeper understanding of how the brain processes financial information and risk. This approach can provide insights into the biological underpinnings of decision-making. Investigating how technology, such as digital platforms and algorithmic trading, influences investor behavior, decision-making processes, and the prevalence of behavioral biases in online trading environments. Understanding the psychological factors driving

investor behavior in cryptocurrency markets, including the impact of sentiment, social media influence, and market anomalies in this relatively new and volatile asset class. Exploring the influence of cultural differences on financial decision-making and whether behavioral biases vary across different cultural backgrounds, offering insights into the universality or specificity of certain biases. Evaluating the effectiveness of behavioral interventions and nudges in promoting better financial decision-making. This includes studying how framing, default options, and educational initiatives impact investor behavior and financial outcomes.

Assessing the long-term implications of behavioral biases on investment outcomes and retirement planning, including how biases affect wealth accumulation and financial well-being over extended periods. Investigating the role of roboadvisors and automated investment platforms in either mitigating or amplifying behavioral biases. This involves examining their impact on decision-making processes and investor outcomes. Exploring the behavioral aspects of corporate decision-making, executive biases, and their influence on corporate financial policies, mergers, and acquisitions. Analyzing the impact of regulatory measures on mitigating behavioral biases in financial markets and evaluating the effectiveness of policies aimed at reducing irrational behavior. Investigating how ethical considerations and Environmental, Social, and Governance (ESG) factors influence investment decisions and whether behavioral biases affect ESG investing strategies. Continued research in these areas can advance our understanding of how behavioral biases shape financial decision-making, contribute to market anomalies, and impact investment outcomes. Moreover, it can provide valuable insights for policymakers, financial practitioners, and individual investors seeking to make more informed and rational financial choices

References:

- A.Pankajam. (2017). Influence of behavioural factors on investment decision making behaviour of individual investors. Puducherry: Pondicherry University.
- Aggarwal, N. (2014). Herd Behaviour and Investment decision making: An empirical study of mutual fund portfolio selection. Jammu: University of Jammu.
- 3. Amos Tversky; Daniel Kahneman ,Judgment under Uncertainty: Heuristics and Biases Science, New Series, Vol. 185, No. 4157. (Sep. 27, 1974), pp. 1124-1131.
- 4. Barber, Brad M., and Odean, Terrance (1999). The Courage of Misguided Convictions. Financial Analysts Journal 55(6).
- Barberis, N., A. Shleifer, and R. Vishny (1998), A model of investor sentiment, Journal of Financial Economics 49, Pg. 307-345.
- Barberis, N., M. Huang, and T. Santos (2001), Prospect theory and asset prices, Quarterly Journal of Economics 116, Pg. 1-53.
- Barberis, Nicholas. and Thaler, Richard (2003). A Survey of Behavioral Finance. Handbook of the Economics of Finance. Elsevier Science, pg. 1054-1056
- 8. Bell, D (1982), Regret in decision making under uncertainty, OperationsResearch30,Pg. 961-981.
- 9. Bhatt, K. P. (2018). Impact Of Behavioural Biases On Individual Investor Behaviour_ A Study Of Equity Investors In Surat. Surat: Veer Narmad South Gujarat University.
- Bikas, E. Jureviciene, D. Dubinskas, P and Novickyte, L, (2013), "Behavioral Finance: the Emergence and Development Trends", Procedia- Social and Behavioral Sciences, Vol. 82, pp. 870-876.

- 11. Brabazon, Tony(2000). Behavioral Finance: A new sunrise or a false dawn? University of Limerick: 1-7.
- 12. Brahmana, R.K, Hooy, C.W. and Ahmed, Z. (2012), "Psychological factors on irrational financial decision making: Case of a day-of-the-week anomaly", Humanomics, Vol. 28, No. 4, pp. 236-257.
- 13. Buehler R., D. Griffin, and M. Ross (1994), Exploring the planning fallacy: whypeopleunderestimate their task completion times, Journal of Personality and SocialPsychology 67,Pg.366-381.
- 14. Chan, Y., and L. Kogan, (2002), "Catching Up with the Joneses: Heterogeneous Preferences and the Dynamics of Asset Prices," Journal of Political Economy 110, pg1255-1285.
- 15. Chen G., Kim K., Nofsinger J.R., and Rui O. M (2007). Trading performance, disposition effect, overconfidence, representative bias and experience of emerging market investors.
- 16. Chopra, N., J. Lakonishok, and J. Ritter (1992), Measuring abnormal performance: dostocksoverreact? Journal of Financial Economics 31, Pg. 235-268.
- 17. Chung, K., H. Jo, and M. Statman (1995), Marketing stocks, unpublished manuscript, Santa ClaraUniversity.
- 18. COVAL, JOSHUA & SHUMWAY, TYLER. (2005). Do Behavioral Biases Affect Prices?. Journal of Finance. 60.
- 19. Daniel Kahneman and Amos Tversky (1979) Prospect Theory: An Analysis of Decision under Risk by Econometrica, 47(2), pg. 263-291
- 20. Daniel Kahneman, Amos Tversky, Subjective probability: A judgment of representativeness, Cognitive Psychology, Volume 3, Issue 3,1972, Pages 430-454
- 21. DeBondt W., Forbes, W., Hamalainen, P. and Muradoglu (2010), "What can behavioral finance teach us about finance?", Qualitative research in Financial Markets, Vol. 2 No. 1, pp- 29-36.
- 22. DeBondt, Werner F.M. and Richard Thaler. (1985). Does the stock market overreact? Journal of Finance 40:3, 793-808.
- 23. Diacon, S. (2002) "Investment risk: A comparative study of the perceptions of consumers and advisers", Centre for Risk and Insurance Studies Discussion paper series, 2002.XIFama, Eugene F. (1998). Market Efficiency, long-term returns, and behavioral finance. Journal of Financial Economics 49, Pg 283–306.
- 25. Fama, Eugene F. (1965). Random Walks in Stock Market Prices. Financial Analysts Journal, vol 21(5), pp. 55 59.
- 26. Fatima, A. (2016). Determinants of Investment Behaviour in Financial Markets: An empirical study of individual investors of Kashmir. Shrinagar: University of Kashmir.
- 27. Festinger, L (1957). A Theory of Cognitive Dissonance, Stanford, CA: Stanford University Press. 28. Forbes, William (2009) Behavioural Finance, New York, J.Wiley
- 29. Fromlet, H(2001)-Behavioral Finance-Theory and Practical Application, Business Economics (36) No 3, pg. 63-69
- 30. Fromlet, H(2001)-Behavioral Finance-Theory and Practical Application, Business Economics (36) No 3, pg. 63-69
- 31. G. M. Frankfurter and E. G. McGoun. Market efficiency or behavioral finance: The nature of the debate. The Journal of Psychology and Financial Markets, 1(4):200–210,Pg. No.2000
- 32. Gali, J. (1994), "Keeping up with the Joneses: Consumption Externalities, Portfolio Choice, and Asset Prices." Journal of Money, Credit and Banking, 26, pg. 1-8.
- 33. Ganatra, D. (2016). "Study on Psychology of Individual Investors". Rajkot: Saurashtra University.
- 34. Gilovich, T., R. Vallone, and A. Tversky (1985), The hot hand in basketball: on the misperception of random sequences, Cognitive Psychology 17, Pg. 295-314.

- 35. Grinblatt, M. and M. Keloharju (2001), How distance, language, and culture influence stockholdings and trades, Journal of Finance 56, Pg. 1053-73.
- 36. Gupta, Y. (2016). Behavioural Finance A Study on investors Behaviour towards Equity Market Investment (with reference to investors of Delhi). New Delhi: Jamia Milia Islamia.
- 37. Heukelom, F. (2007), Kahneman and Tversky and the making of behavioral economics. Erasmus Journal for Philosophy and Economics, 2(1), 161-164.
- 38. Hirschey, Mark, and John Nofsinger. (2008). Investments: Analysis and Behaviour. Published by Tata McGraw Hill. Ed. SIE, pp. 210
- 39. Jensen, Michael C., and William H. Meckling. (1994). The Nature of Man. Journal of Applied Corporate Finance. Vol. 7(2), pp. 4–19.
- 40. John R. Nofsinger, (2001), The impact of public information on investors, Journal of Banking &Finance, 25, (7), 1339-1366
- 41. Johnsson, Lindblom & Platan (2002). Beahvioural Finance- and the Change of Investor Behaviour During and After the Speculative Bubble at the End of the 1990s. Master"s Thesis in Finance, Schoolof Economics and Management, Lund University.
- 42. Joo, B.A. and Durri, K. (2018), "impact of Psychological Traits on Rationality of Individual investors", Theoretical Economics Letters, Vol. 8, pp. 1973-1986.
- 43. Jose, Mathews (2005), "A situation-based Decision-making process," The ICFAI Journal of Organisation Behaviour, July, Vol. IV, No.3, pg 19-25
- 44. Jureviciene, Daiva & Ivanova, Olga. (2013). Behavioural Finance: Theory and Survey. Mokslas -Lietuvos ateitis. 5.
- 45. Kahneman, D., & Tversky, A. (1973). On the psychology of prediction. Psychological Review, 80(4), 237–251.
- 46. Kahneman, Daniel and Tversky, Amos. (1979). Prospect Theory: An Analysis of Decision under Risk. Econometric, vol 47(2), pp. 263 291.
- 47. Kannadhasan, M. & Nandagopal, R.. (2008). The role of attitudes in strategic investment decisionmaking, ICFAI Reader, XI(7), pg 15-21.
- 48. Kiyilar, M. and Acar, O. (2009), "Behavioral Finance and the study of the irrational financial choices of credit card users", Annales Universitatis Apulensis Series Oeconomica, Vol. 1, No. 1, pp- 457- 468.
- 49. Kumari, Nidhi & Sar, Ashok. (2017). Cognitive and behavioral biases influencing investment performance. Zenith international journal of multidisciplinary research. 7. 2231-5780.
- 50. Lintner, G. (1998). "Behavioral Finance: Why investors make bad decisions", ThePlanner, 13(1):Pg7-8