Future of Education: Exploring the Potential of AI-Powered Learning Platforms

¹Dr Charu Bisaria

Assistant Professor, Amity Business School, Amity University Uttar Pradesh Lucknow Campus, Uttar Pradesh, India charubisaria1@gmail.com

²Prof Dr Rajendra Singh

Principal , Government Ghazipur Homoeopathic Medical College and Hospital, Rauza, Ghazipur-233002, Uttar Pradesh drrajputbpl@gmail.com

³Shrinidhi V S

Assistant Professor, Department of Economics IIBS, Bangalore, Karnataka shrinidhi.vs@yahoo.com
ORCID: 0000-0002-4483-7262

⁴Muthuraman Subbiah

Lecturer, Department of Engineering, MIE Section, College of Engineering And Technology, University of Technology and Applied sciences, Muscat, Oman.

muthu 9678@gmail.com

⁵Dr. Vrittee.C.Parikh

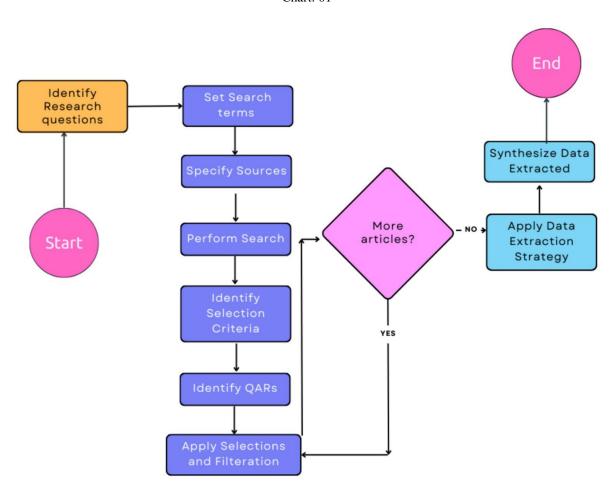
Associate Professor, Department of Management,
Aditya Institute of Management Studies and Research, Borivali West, Mumbai 400092
vrittee.parikh@gmail.com

⁶Dr. Prem latha Soundarraj

Professor – MBA, School of Business and Management, Christ University, Pune, Lavasa. Maharashtra lathaprem@yahoo.com

Abstract

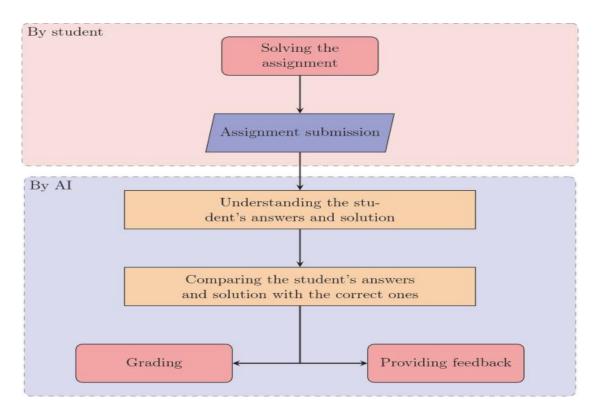
Traditional learning environments experience a transformation through Artificial Intelligence (AI) which provides students with tailored education that draws from data analysis and delivers automated learning resources. Advanced artificial intelligence systems inside educational platforms improve student involvement and educational accessibility as well as operational efficiency through adaptive curricula combined with automated feedback and intelligent instructional capabilities. The systems help teachers execute their responsibilities through automatic documentation operations including grading work and content development and performance analytics functions. The implementation of AI within education systems creates problems related to ethical standards together with data protection matters and machine-made biases. AI-powered educational systems possess strong potential to link disconnected populations through inclusive learning infrastructure but they face


obstacles from differences in the available technology. AI plays an essential part in developing future skills because current workplace requirements need people to re-learn and advance their competencies throughout their entire working life. Nobody can overlook the examination of AI-powered learning platforms that affect education by creating both present obstacles and long-term opportunities. The research examines AI implementation methods within learning systems and the necessary steps to resolve ethical concerns in AI technologies. Improving education through AI depends on four main performance-enhancing attributes: automated processes and contemporary learning approaches coupled with statistical information systems and expertise refinement. This paper examines AI education benefits alongside its constraints to create valuable guidelines for bureaucracy leaders and classroom instructors while stakeholders deploy AI solutions which build an efficient and inclusive learning system for generations to come.

Keywords: AI in education, adaptive learning, personalized learning, AI automation, predictive analytics, future skills, ethical AI, educational technology, digital transformation

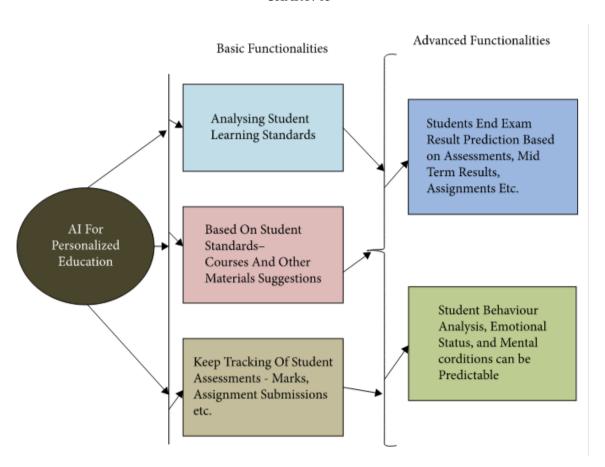
Introduction

AI technology continues to advance rapidly which produces major changes throughout different businesses including education. The integration of AI-powered learning platforms transforms traditional education systems through the combination between automated processes and personalized student experiences and data analytics. Live adaptive learning solutions through these technologies create personal experiences which react to student requirements thus producing better student vitality and operational efficiency and expanded reach. Education practices that function as a standard approach are transitioning toward intelligent tutoring systems (ITS) implemented through artificial intelligence alongside real-time feedback technologies and automated content conveyance systems. Educational setups of the future will prioritize students' needs through AI implementation which will assist educational activities for learners and teachers. The ability to generate individual learning programs represents one main benefit AI delivers to educational systems. This teaching method departs from normal instructional practice because it utilizes AI technology to create adjusted learning plans that emerge from ongoing performance assessments and learning style and progress monitoring. The system uses adaptive learning algorithms which read student information to modify content difficulty because these algorithms also recommend supplemental materials and specialized educational support to match each student's individual learning speed. AI-generated chat bots together with virtual assistants provide students with instant support which creates interactive educational experiences and strengthens their engagement. The integration of AI in education enables teachers to automate their educational workforce responsibilities. The automation of educational processes through AI tools enables teachers to spend their time on teaching quality while managing class activities like grading and attendance records. The production of AI-made content including quizzes and study materials together with assignments frees teachers from heavy workloads while supplying students with updated educational material which is structured for learning. The educational application of AI brings both significant promises and multiple difficulties that users need to navigate. The process of adopting AI in education faces crucial ethical barriers because of problems with data privacy alongside algorithmic discrimination and unequal digital access. The effectiveness of AI depends heavily on big data usage which causes student data vulnerability and improper data handling scenarios. Moreover, there is an ongoing debate about the role of teachers in an AI-driven education system—whether AI should complement or replace human educators. Additionally, the disparity in access to AI technologies across different regions and socioeconomic groups highlights the need for inclusive and equitable AI-driven education policies.


Chart: 01

Future of AI-powered education

The future of AI-powered education extends beyond schools and universities, playing a crucial role in lifelong learning and workforce development. As industries evolve due to automation and digital transformation, the demand for continuous learning and upskilling has increased. AI-powered platforms can bridge this gap by offering personalized skill development programs, career guidance, and micro learning opportunities tailored to individual career paths. The integration of AI in education has the potential to create a flexible, future-ready learning ecosystem that caters to students, educators, and professionals alike. Data privacy and security concerns have emerged due to the vast amount of student data collected by AI systems. Issues related to algorithmic bias also raise questions about the fairness and accuracy of AI-driven assessments and recommendations. Moreover, the digital divide remains a significant barrier, as access to AI-powered learning tools is often limited by economic, geographical, and infrastructural constraints. Another key consideration is the role of AI in lifelong learning and workforce development. As industries rapidly evolve due to automation, there is a growing need for continuous upskilling and reskilling. AI-powered platforms are now being utilized for career training, professional certifications, and corporate learning programs, enabling individuals to stay competitive in the job market. Governments and organizations worldwide are investing in AI-driven education policies to bridge skill gaps and promote digital literacy.


CHART: 2

Research Background

AI-driven learning platforms are revolutionizing traditional educational frameworks by providing personalized learning, automation, and predictive analytics to enhance student engagement and performance. The shift toward digital education and EdTech innovations has accelerated, particularly with the rise of online learning, MOOCs (Massive Open Online Courses), and AI-powered virtual classrooms. This research explores the historical evolution, current trends, and future prospects of AI in education, highlighting key developments that have shaped its adoption. Historically, education has evolved through several technological advancements. The transition from chalkboards to digital whiteboards, printed textbooks to e-books and face-to-face teaching to online learning has paved the way for AI-driven innovations. The early adoption of learning management systems (LMS) introduced automation in course delivery, grading, and student progress tracking. However, AI has taken these capabilities further by enabling real-time analytics, intelligent tutoring systems, and adaptive learning models that cater to individual student needs. Traditional education models often follow a linear curriculum that does not account for diverse learning styles and paces. AI-powered platforms use machine learning algorithms to analyze student performance data and provide customized learning paths, automated assessments, and targeted interventions. This approach has been proven effective in improving student retention, engagement, and academic performance. Additionally, AI has transformed administrative processes within educational institutions. AI-driven grading systems, virtual teaching assistants, student support have streamlined operations, allowing educators to focus on interactive teaching rather than repetitive administrative tasks. Universities and schools have increasingly adopted AI-based plagiarism detection, attendance tracking, and automated scheduling systems, demonstrating the growing role of AI in education management. However, AI adoption in education is not without its challenges.

CHART: 03

Literature Review

Pavlik (2023) explored the implications of generative AI, particularly Chat GPT, on journalism and media education. The study highlights how AI can assist in content creation, research, and storytelling, while also raising ethical concerns related to bias, misinformation, and journalistic integrity. The paper emphasizes the need for educators to integrate AI literacy into curricula, ensuring that students develop critical thinking and ethical awareness when using AI tools. The researcher argues that AI should be viewed as a collaborative tool rather than a replacement for human journalists, requiring responsible use and regulation to maintain media credibility and accuracy. Tlili (2023) examines the role of Chat GPT and chat bots in education, exploring their potential benefits and challenges. The authors discuss how AI can personalize learning, provide instant feedback, and enhance accessibility, making education more engaging. The paper emphasizes the need for ethical guidelines and AI literacy programs to ensure responsible usage. The authors suggest that educators should embrace AI as a supportive tool, leveraging its strengths while teaching students to critically evaluate AI-generated responses for accuracy and reliability. King (2023) focuses on Chat GPT's role in higher education, particularly in relation to plagiarism, academic integrity, and AI-assisted learning. The author discusses the potential for AI to enhance student engagement, automate grading, and generate learning resources, while also cautioning against its misuse in academic dishonesty. The paper explores the challenges of distinguishing AI-generated content from original work, emphasizing the importance of AI detection tools and ethical AI policies. King concludes that while AI can be an asset in education, clear guidelines, transparency, and critical thinking skills are essential to prevent misuse and ensure responsible AI adoption.

Research Gap

The growing implementation of Artificial Intelligence (AI) in education produces various knowledge deficiencies about its lasting impact and difficulties as well as successful outcomes. Current research shows that AI learning platforms deliver three main advantages but additional study is needed to solve multiple remaining problems. The research process aims to address these shortcomings through an extensive examination of AI educational implementation and its features regarding accessibility and ethics and student-teacher relationships together with competence enhancement. Research shows insufficient evidence regarding how successful AI-powered educational platforms operate in multiple educational environments. Existing research mainly addresses AI adoption in advanced developed nations despite showing minimal investigation of AI implementation potentials in developing societies and rural and poor communities. The essential elements of technological infrastructure alongside internet availability along with digital proficiency influence AI educational outcomes although research focuses on other areas. The research seeks to close this discrepancy by analyzing methods of making AI technology accessible in cultural and economic diverse settings. Education experts need to address both ethical and privacy issues that emerge from AI implementation in schools. Personified learning from AI systems depends on student data because educational institutions need to research better methods for data privacy handling and security risk reduction and algorithmic bias elimination. Student rights and digital ethical concerns emerge through the combination of data misuse alongside insufficient transparency in AI-based decision-making together with surveillance practices. This study investigates these concerns and proposes best practices for ethical AI adoption in educational settings. While AI can automate administrative tasks and provide intelligent tutoring, it is unclear how it affects teacher-student interactions, emotional support, and pedagogical methods. Some educators fear that AI could replace human teachers, while others see it as a collaborative tool to enhance teaching effectiveness. This study explores how AI can be used to support rather than replace educators, ensuring a balanced integration of technology and human expertise.

Importance of the Study

The quick advancements in Artificial Intelligence technology are reshaping different business sectors including the education field. The field of education experienced a transformation through AI-enabled academic systems which offer customized learning opportunities besides automated grading solutions and analytical discoveries. This study reflects critical importance by investigating the opportunities together with difficulties which arise from AI-driven education while showing ways to implement AI to enhance learning quality and availability and efficiency. The value of this research lies particularly in its ability to address the various educational requirements of students that standard education techniques seldom meet. Today's academic system delivers uniform teachings without considering student learning type and their respective learning rates along with individual talent levels. Digital platforms with AI capabilities create individualized learning approaches which tailor educational support specifically for each student. AI technology tracks real-time student achievement to detect both areas of expertise and shortcomings which it uses to modify educational difficulty levels and build individualized learning roadmaps. The personalized lessons delivered by adaptive approaches help students stay involved while boosting their education success notably for pupils dealing with conventional lessons. The research specifically explores education accessibility as well as inclusivity. Many students, especially those in remote areas, underprivileged communities, or with disabilities, face barriers to quality education. AI has the potential to break these barriers by offering online, multilingual, and assistive learning tools. Features such as speech-to-text, real-time translation, and AI-driven virtual tutors can empower students who might otherwise struggle in conventional classrooms. By examining the role of AI in creating a more inclusive learning environment, this study highlights its potential in bridging the digital divide and making education accessible to a wider population. Additionally, this research is important because it addresses the impact of AI on educators. While AI is often viewed as a tool for student learning, its influence on teaching methodologies and administrative efficiency cannot be overlooked. AI can automate repetitive tasks such as grading, attendance tracking, and course management, allowing teachers to focus on interactive teaching and student mentorship. This study provides valuable insights into how AI can serve as a

collaborative tool for educators, rather than replacing them, ensuring that technology enhances rather than disrupts the education system. Moreover, this study is crucial in exploring ethical, privacy, and security concerns surrounding AI-powered learning. Without proper guidelines and ethical considerations, AI systems could inadvertently reinforce biases, compromise student privacy, or create inequitable learning experiences. By investigating these challenges, this research aims to provide recommendations for ethical AI implementation in education. Finally, this study is important because it looks at future skill development and lifelong learning. In a rapidly changing job market, AI-powered platforms can help individuals up skill and reskill to stay competitive.

Statement of the Problem

The swift digital evolution of educational institutions has led these institutions to completely include Artificial Intelligence systems into their learning domains. Teachers must solve essential operational barriers of AI-powered educational systems because these systems demonstrate proven success in individualized teaching and operational optimization and enhanced user participation. A study assesses both the significance and obstacles of AI-based education systems while predicting future trends that require certain solutions to optimize AI effectiveness. Traditional education encounters major obstacles since it fails to provide personalized educational methods to students. Traditional teaching methods create poor academics because they lack effectiveness in delivering instruction to students at varying levels of understanding which disconnects learners from classrooms. AI brings educational improvements through adaptive learning systems that tailor student content to match individual education specifications. The present adoption of AI-based learning systems by educational institutions delays because they lack both AI expertise and required infrastructure. The study evaluates the obstacles related to AI implementation affecting schools and universities which also investigates the implementation of AI in online education platforms. Digital access disparities function as a serious problem alongside digital divide issues. Remote learning capabilities of AI education tools remain constant yet widespread digital inequity combined with literacy gaps and insufficient technology resources hinder AI system uptake. Many students, particularly in developing countries and lowincome communities, may not have access to AI-driven platforms, widening educational inequalities. This study investigates how AI can be implemented in a way that promotes equitable access to quality education, ensuring that no student is left behind. Furthermore, AI's role in teacher-student interaction is a critical issue that needs exploration. While AI can automate administrative tasks, there is growing concern that excessive reliance on AI may reduce human interaction in education. The presence of teachers is essential for emotional support, motivation, and mentorship, aspects that AI cannot fully replicate. This study examines how AI can be integrated in a way that enhances teaching rather than replacing human educators, ensuring a balanced approach to AI-driven education. Moreover, AI algorithms may reinforce biases if they are not properly designed and monitored, leading to inequitable learning experiences for certain groups of students. Finally, the study explores AI's role in lifelong learning and workforce development. With rapid technological advancements, there is an increasing need for continuous learning, upskilling, and reskilling. AI-powered platforms have the potential to support career development, but their effectiveness in preparing individuals for the future job market remains uncertain. This study aims to assess how AI can be utilized for future skill development, ensuring that education systems are aligned with emerging industry demands.

Objectives

- 1. To analyze the role of AI-powered learning platforms in transforming education.
- To examine the impact of personalized learning and automation on student engagement.
- 3. To explore the challenges of AI adoption, including ethical and privacy concerns.
- 4. To assess the potential of AI in future skill development and lifelong learning.
- 5. To provide recommendations for effective AI integration in education.

Methodology

The research application combines quantitative with qualitative approaches to examine how AI-enabled learning systems affect educational operations. This research design employs statistical data analysis in conjunction with case studies and expert interview data which creates a thorough examination of AI usage in education. The research adopts a descriptive and analytical design to study the capabilities and obstacles and results of AI implementations in education. The research investigates education transformation through evaluation of personalized learning alongside automated processes and data security systems and student access to resources. The research design utilizes stratified random sampling to collect information that represents institutions of different types and geographic regions and socioeconomic groups. The selected participant sample number of 150 aims to guarantee both statistical reliability and validity.

Limitations of the Study

- 1. The study may not fully capture global differences in AI adoption.
- 2. Self-reported data may be subject to bias.
- 3. AI technology evolves quickly, which may affect the relevance of findings over time.

Analysis and Results

This research aims to analyze the current landscape, challenges, and future directions of AI-powered learning platforms. The findings will help stakeholders optimize AI integration while addressing ethical and practical concerns, ensuring a more inclusive and technology-driven education system. The following hypothesis is framed to test the relationship between the socio-economic characteristics and the level of impact.

*H*₀: *There is no significant relationship between the socio-economic and* level of Future of Education.

Table 1 Level of age and Level of impact

Age	Level of Impact			Total
C		r		
	Low	Moderate	High	
Young	10	21	9	40
Toung	25.0%	52.5%	22.5%	100.0%
Middle	10	34	30	74
	13.5%	45.9%	40.5%	100.0%
	5	22	9	36
Old				
	13.9%	61.1%	25.0%	100.0%
Total	25	77	48	150
1 Otti	16.7%	51.3%	32.0%	100.0%

This table presents data on the level of practice across different age groups: Young, Middle, and Old. The total sample size is 150, distributed among these age categories. Here's an interpretation of the findings:

- 1. Young Age Group (n = 40)
 - o 25.0% have a low level of practice.

- o 52.5% have a moderate level of practice.
- o 22.5% have a high level of practice.
- o The majority (52.5%) of young individuals engage in moderate practice, while a relatively lower percentage (22.5%) have a high level of practice.
- 2. Middle Age Group (n = 74)
 - o 13.5% have a low level of practice.
 - o 45.9% have a moderate level of practice.
 - o 40.5% have a high level of practice.
 - o Compared to the younger group, more individuals in this category (40.5%) engage in a high level of practice, indicating greater participation or experience.
- 3. Old Age Group (n = 36)
 - o 13.9% have a low level of practice.
 - o 61.1% have a moderate level of practice.
 - o 25.0% have a high level of practice.
 - o The majority (61.1%) engage in moderate practice, with a relatively smaller proportion (25.0%) at a high level.
- 4. Overall Trends (n = 150)
 - o The highest percentage of individuals (51.3%) falls under the moderate practice category.
 - The middle-aged group has the highest percentage (40.5%) in the high practice category, indicating that this age group is the most engaged.
 - The young and old groups have relatively lower percentages of high practice (22.5% and 25.0%, respectively).
 - The low practice level is more prevalent among the young (25.0%) compared to middle-aged (13.5%) and old (13.9%) individuals.

Key Insights:

- Middle-aged individuals are more likely to engage in high-level practice compared to younger and older individuals.
- Older individuals have the highest proportion in the moderate category, while the youngest group has the highest proportion in the low category.
- The findings suggest that engagement in practice increases with age, peaks in middle age, and then slightly declines in old age.

Table 2 Chi-Square test

Test	Chi-Square	df	CC	Sig.
Result	5.178	4	0.121	0.239

This is the p-value, which tells us whether the observed association is statistically significant. The typical threshold for significance is 0.05 (5%). Since 0.239 > 0.05, the result is not statistically significant. This means that age group does not have a significant impact on the level of practice, and any observed differences could be due to chance. There is no strong or statistically significant relationship between age group and level of practice. The differences in practice levels across age groups appear to be minor and could be random rather than indicative of a real pattern.

Gender

Table 3
Gender and Level of impact

Gender and Level of Impact				
Gender	L	Total		
	Low	Moderate	High	Total
Male	12	46	33	91
	13.2%	50.5%	36.3%	100.0%
Female	13	31	15	59
	22.0%	52.5%	25.4%	100.0%
Total	25	77	48	150
	16.7%	51.3%	32.0%	100.0%

This table presents the distribution of practice levels across male and female respondents. The total sample size is 150 (91 males and 59 females). The majority of participants (51.3%) fall in the moderate practice category. Males are more likely to have high practice levels (36.3%) compared to females (25.4%). Females have a higher percentage in the low practice category (22.0%) compared to males (13.2%), suggesting they are less engaged in higher levels of practice.

Key Insights:

Males exhibit a higher tendency towards high practice levels, while females have a higher proportion in the low practice category.

The moderate level of practice remains almost the same for both genders (~51%).

This suggests a possible gender-based difference in engagement, with males being more involved at higher practice levels.

Table 4
Chi-Square test

Test	Chi-Square	df	CC	Sig.
Result	0.715	2	0.023	0.478

The calculated Chi-Square value is 0.715 for the degree of freedom 2 is insignificant (p-0.478). The value of CC test is very less (0.023). Hence, it is understood that there is no relationship between the gender and level of impact.

Descriptive Statistics

Table 5: Opinion of the respondents towards Future of Education: Exploring the Potential of AI-Powered Learning *Platforms*

Factors	N	Mean	Std. Deviation
Personalized Learning & Adaptive Systems	150	3.51	1.140
Accessibility & Inclusivity	150	1.93	.682
Data-Driven Insights & Predictive Analytics	150	1.89	.747

AI-Driven Automation in Teaching & Administration	150	3.70	.588
Ethical & Privacy Concerns	150	2.15	.683
Future Skill Development & Lifelong Learning	150	1.58	.495

The table presents six key factors affecting AI-powered learning platforms, along with their mean scores and standard deviations (Std. Dev.), based on a sample size of 150 respondents.

Key Insights:

1. Top Priority Factors:

- "AI-Driven Automation in Teaching & Administration" (Mean = 3.70) is the most valued factor, suggesting that respondents recognize AI's ability to streamline administrative tasks and improve efficiency in education.
- "Personalized Learning & Adaptive Systems" (Mean = 3.51) ranks second, indicating strong support for AI-driven customization of learning experiences.

2. Lower Priority Factors:

- "Future Skill Development & Lifelong Learning" (Mean = 1.58) is perceived as the least influential, suggesting that respondents may not fully recognize AI's potential in upskilling and workforce adaptation.
- o "Data-Driven Insights & Predictive Analytics" (Mean = 1.89) also ranks low, indicating limited perceived impact on AI-based education.

3. Ethical & Privacy Concerns (Mean = 2.15):

 This factor is moderately relevant, showing some awareness of AI's risks in education, but it does not dominate the discussion.

Discussion

Factors	Mean	Inference
AI-Driven Automation in Teaching & Administration	0.588	Most important factor, with high agreement among respondents.
Personalized Learning & Adaptive Systems	1.140	Considered important but has higher response variation.
Ethical & Privacy Concerns	0.683	Moderately important, but concerns are not dominant.
Accessibility & Inclusivity	0.682	Considered less important, with moderate agreement

data-Driven Insights & Predictive Analytics	0.747	Not viewed as highly important, with some variation in responses
Future Skill Development & Lifelong Learning	0.495	Least important factor, with strong agreement among respondents.

Implications of the Study

- 1. For Educators: Helps teachers understand how AI can enhance teaching efficiency and student engagement.
- 2. For Students: Highlights the benefits of personalized learning and adaptive study tools.
- 3. For Policymakers: Provides recommendations on ethical AI policies and digital education strategies.
- 4. For EdTech Companies: Offers insights into AI-driven innovations and market opportunities.

Recommendations and Suggestions

- 1. Enhance Digital Infrastructure: Invest in internet access, AI tools, and digital literacy programs to ensure equitable AI adoption.
- 2. Develop Ethical AI Guidelines: Implement strict data privacy policies and bias detection mechanisms to protect student information.
- 3. Promote Teacher-AI Collaboration: Provide training programs for educators to integrate AI into teaching effectively.
- 4. Expand AI Accessibility: Develop low-cost AI-powered learning tools for underserved communities.
- 5. Encourage Continuous Learning: Integrate AI in corporate training and lifelong learning programs to prepare individuals for future jobs.

Conclusion

AI-powered learning platforms will revolutionize education through their self-generated learning systems using data analytics for personalized instruction. The study evaluates both the positive and possible adverse impacts of AI education technology while emphasizing proper moral conduct for implementation procedures and equal access to educational resources in combination with teacher participation. The research provides vital knowledge about crucial gaps alongside ethical aspects and practical barriers to policy makers, educators and EdTech companies who benefit from its findings. The study demonstrates that AI produces optimum advantages when human teachers collaborate with it instead of opposing it directly because such methods create an adaptable learning environment which includes all students and promotes future-readiness. Neuman et al.'s work studies AI-related educational difficulties to establish practical and ethical ways of AI implementation across educational environments. The study exposes critical system shortcomings while identifying security concerns that guide researchers to develop essential findings for AI-based educational development. Our examination of this important study reveals how AI uses its transformative abilities to develop personalized education that provides quick and efficient access to information and resolves barriers to AI system use and ethical dilemmas. The educational sector undergoes a major industrial transformation after AI-based learning platforms start appearing in educational institutions. These technologies offer personalized learning, automation, and data-driven insights, significantly impacting traditional educational models. The studies on AI's influence on workplace advancement and lifelong education practice show limited coverage regarding enduring consequences. To remain competitive in their professional field's workers need to build new talents and acquire multiple qualifications as the industrial revolution advances. More assessment is necessary for understanding artificial intelligence-based learning systems in employee training due to ongoing questions about their success rates. AI technology requires evaluation for its role in establishing future skills development and corporate training and professional education platforms. This study fills necessary gaps in existing knowledge to achieve full understanding of AI in education and provides navigation to policymakers and developers for building an inclusive ethical AI educational platform.

Reference

- 1. Abduljabbar, A.; Gupta, N.; Healy, L.; Kumar, Y.; Li, J.J.; Morreale, P. A Self-Served AI Tutor for Growth Mindset Teaching. In Proceedings of the 2022 5th International Conference on Information and Computer Technologies (ICICT), New York, NY, USA, 4–6 March 2022; pp. 55–59
- 2. AlAfnan, M.A.; Dishari, S.; Jovic, M.; Lomidze, K. Chatgpt as an educational tool: Opportunities, challenges, and recommendations for communication, business writing, and composition courses. J. Artif. Intell. Technol. 2023, 3, 60–68
- 3. Bozkurt, A.; Xiao, J.; Lambert, S.; Pazurek, A.; Crompton, H.; Koseoglu, S.; Farrow, R.; Bond, M.; Nerantzi, C.; Honeychurch, S. Speculative Futures on Chat GPT and Generative Artificial Intelligence (AI): A collective reflection from the educational landscape. Asian J. Distance Education 2023, 18, 50–130.
- 4. Deng, X.; Yu, Z. A systematic review of machine-translation-assisted language learning for sustainable education. Sustainability 2022, 14, 7598
- 5. Hassani, H.; Silva, E.S. The role of Chat GPT in data science: How ai-assisted conversational interfaces are revolutionizing the field. Big Data Cogn. Comput. 2023, 7, 62
- 6. Jovanovic, M.; Campbell, M. Generative Artificial Intelligence: Trends and Prospects. Computer 2022, 55, 107–112.
- 7. King, M.R.; ChatGpt. A conversation on artificial intelligence, chat bots, and plagiarism in higher education. Cell. Mol. Bioeng. 2023, 16, 1–2
- 8. Makridakis, S. The forthcoming Artificial Intelligence (AI) revolution: Its impact on society and firms. Futures 2017, 90, 46–60.
- 9. Mathew, A. Is Artificial Intelligence a World Changer? A Case Study of Open AI's Chat GPT. Recent Prog. Sci. Technol. 2023, 5, 35–42
- 10. Mondal, S.; Das, S.; Vrana, V.G. How to bell the cat? A theoretical review of generative artificial intelligence towards digital disruption in all walks of life. Technologies 2023, 11, 44.
- 11. Pavlik, J.V. Collaborating with Chat GPT: Considering the Implications of Generative Artificial Intelligence for Journalism and Media Education. J. Mass Communication. Education. 2023, 78
- 12. Sallam, M. Chat GPT utility in healthcare education, research, and practice: Systematic review on the promising perspectives and valid concerns. Healthcare 2023, 11, 887.
- 13. Schlippe, T.; Sawatzki, J. Cross-lingual automatic short answer grading. Artificial Intelligence in Education: Emerging Technologies, Models and Applications: Proceedings of 2021 2nd International Conference on Artificial Intelligence in Education Technology; Springer: Berlin, Germany, 2021; pp. 117–129.
- 14. Skavronskaya, L.; Hadinejad, A.; Cotterell, D. Reversing the threat of artificial intelligence to opportunity: A discussion of Chat GPT in tourism education. J. Teach. Travel Tour. 2023, 23, 253–258.
- 15. Tlili, A.; Shehata, B.; Adarkwah, M.A.; Bozkurt, A.; Hickey, D.T.; Huang, R.; Agyemang, B. What if the devil is my guardian angel: Chat GPT as a case study of using chat bots in education? Smart Learn. Environ. 2023, 10, 15