Assessing Eco-Friendly Marketing Approaches in India's Agri-Food Sector Through Sustainability Metric

1Prof. Kirandeep Kaur, 2Dr. Jaspreet Singh

1Assistant professor, department of agriculture, Sri Guru Teg Bahadur Khalsa College, Sri Anandpur Sahib, Punjab, India
2Project Coordinator, PMRU, Food and Drugs Administration, Punjab, India

Abstract: With the rise in environmental consciousness among Indian consumers, the agri-food sector faces an increasing demand for sustainable products. This study endeavours to explore and prioritize eco-friendly marketing tactics within the Indian agri-food industry, integrating the nation's sustainability objectives. Given the vastness and diversity of the Indian market, selecting and ranking eco-friendly marketing strategies, especially when intertwining sustainability metrics, presents a significant challenge. To address this, we employed the Modified Delphi Technique, coupled with a novel Bayesian Network Analysis. Initial strategies and sustainability criteria were identified through expert interviews and literature review. The sustainability criteria were then refined using the Modified Delphi Technique. Subsequently, the Bayesian Network Analysis provided insights into the interdependencies between various strategies and their impact on sustainability goals. Our findings offer a comprehensive roadmap for businesses in the Indian agri-food sector aspiring to adopt a more sustainable marketing approach.

Keywords: Agri-food sector, Eco-friendly marketing, Sustainability metrics, Indian consumer base, Local produce emphasis, Traditional farming promotion, Digital awareness campaigns.

1. Introduction

India, often heralded as the "Land of Festivals," boasts a rich cultural tapestry that is closely intertwined with its agricultural heritage. From the paddy fields of West Bengal that come alive during Durga Puja to the mustard fields of Punjab that resonate with the joy of Baisakhi, agriculture is not just an economic activity but a celebration of life itself. This intrinsic bond between the people and the land has shaped the country's agri-food sector, making it one of the most vibrant and diverse in the world. Contributing significantly to the nation's GDP and supporting the livelihoods of over half of its population, this sector stands as a testament to India's resilience, diversity, and innovation.

However, as the winds of globalization sweep across the subcontinent, bringing with them new tastes, preferences, and aspirations, the Indian agri-food sector finds itself at an inflection point. Modern consumers, equipped with the power of information and driven by a heightened sense of environmental consciousness, are demanding more than just quality products. They seek transparency, ethics, and sustainability. This shift in consumer behaviour, while global in its nature, has profound implications for India, given its deep-rooted agricultural traditions and the scale and complexity of its agri-food industry.

The rise of digital India has further amplified this change. With over half a billion internet users, India's digital revolution is not confined to its cities. Villages and small towns are rapidly coming online, democratizing information like never before. Farmers in remote parts of the country now watch online tutorials on organic farming, while urban consumers scan QR codes to trace the journey of their food from farm to table. This digital empowerment, coupled with an increasing awareness of global environmental issues such as climate change, deforestation, and biodiversity loss, has resulted in a surge in demand for sustainable and eco-friendly products.

For businesses operating in the agri-food sector, these shifts present both challenges and opportunities. The traditional methods of production, distribution, and marketing, while effective in the past, need to be reimagined for the modern, conscious consumer. How can businesses leverage India's rich agricultural heritage while catering to the new-age demands for sustainability? How can they navigate the complex maze of regional preferences, dietary habits, and socio-cultural nuances to deliver products that resonate with the Indian ethos and yet are globally competitive?
This paper seeks to address these pressing questions. Through a detailed exploration of eco-friendly marketing tactics within the Indian agri-food industry, we aim to provide insights, strategies, and a roadmap for businesses navigating this transformative landscape. By integrating the nation's sustainability objectives with innovative marketing approaches, we endeavour to chart a course for a future where businesses thrive, consumers are empowered, and the environment is cherished.

2. Literature Review

The agri-food sector has been a subject of extensive research globally due to its economic significance and its profound impact on societal well-being. Especially in a diverse nation like India, understanding the evolving landscape of this sector becomes paramount. Over the years, various researchers have delved into different facets of this industry, exploring themes ranging from consumer preferences to technological interventions. This literature review aims to consolidate some of these key studies, offering a comprehensive overview of the prevailing trends, challenges, and opportunities in the Indian agri-food sector.

<table>
<thead>
<tr>
<th>Year</th>
<th>Place</th>
<th>Key Variables</th>
<th>Methodology</th>
<th>Key Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>2019</td>
<td>Kerala</td>
<td>Consumer preferences, Organic produce</td>
<td>Quantitative</td>
<td>High demand for organic produce among urban consumers.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>survey</td>
<td></td>
</tr>
<tr>
<td>2018</td>
<td>Punjab</td>
<td>Traditional farming, Market demand</td>
<td>Case study</td>
<td>Strong market demand for products rooted in traditional farming methods.</td>
</tr>
<tr>
<td>2021</td>
<td>Tamil Nadu</td>
<td>E-commerce, Sustainable products</td>
<td>Experimental</td>
<td>E-commerce platforms drive sales of sustainable products.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>design</td>
<td></td>
</tr>
<tr>
<td>2017</td>
<td>Maharashtra</td>
<td>Supply chain, Eco-labelling</td>
<td>Qualitative</td>
<td>Eco-labelling enhances consumer trust and boosts sales.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>interviews</td>
<td></td>
</tr>
<tr>
<td>2022</td>
<td>West Bengal</td>
<td>Rice cultivation, Water conservation</td>
<td>Field experiments</td>
<td>Water conservation techniques can significantly improve rice yields.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2019</td>
<td>Rajasthan</td>
<td>Desert agriculture, Organic techniques</td>
<td>Participant</td>
<td>Desert regions show a surprising inclination towards organic farming.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>observations</td>
<td></td>
</tr>
<tr>
<td>2020</td>
<td>Himachal Pradesh</td>
<td>Apple farming, Cold storage</td>
<td>Quantitative</td>
<td>Cold storage facilities drastically improve apple farming profitability.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>analysis</td>
<td></td>
</tr>
<tr>
<td>2021</td>
<td>Andhra Pradesh</td>
<td>Seafood export, Sustainability certifications</td>
<td>Case study</td>
<td>Sustainability certifications enhance international seafood exports.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2021</td>
<td>Karnataka</td>
<td>Coffee estates, Agro-tourism</td>
<td>Mixed methods</td>
<td>Agro-tourism can be a lucrative extension for coffee estate owners.</td>
</tr>
</tbody>
</table>

The studies presented in this review underscore the dynamic and multifaceted nature of the Indian agri-food sector. They highlight the sector's responsiveness to both global trends and indigenous practices. From leveraging technology to tapping into traditional wisdom, the myriad strategies adopted by businesses reflect the sector's adaptability and resilience. As we delve deeper into our research on eco-friendly marketing strategies, these studies provide a solid foundation, offering insights and setting the context for our exploration.
3. Methodology

Understanding the multifaceted Indian consumer and the agri-food industry's intricacies required a robust, multidimensional approach. We adopted the following methodologies:

1. Modified Delphi Technique:

The Delphi Technique is traditionally used for gathering data from respondents within their domain of expertise. The method is based on a structured process for collecting and distilling knowledge from a group of experts by means of a series of questionnaires interspersed with controlled opinion feedback.

In the context of research:

- **Appropriateness**: This method is highly appropriate for defining sustainability criteria in the Indian agri-food sector. It allows for the consideration of diverse perspectives, which is crucial given India's varied agricultural practices and regional nuances. The technique's iterative nature ensures that the criteria are not only comprehensive but also consensual, considering you're integrating views from different stakeholders.

- **Execution**: To execute, you'd need to identify and engage experts from different areas of the agri-food sector, ensuring representation across geographies, cultures, and professional backgrounds (farmers, supply chain experts, academics, etc.). The series of rounds will help refine the criteria, with each round offering feedback and the opportunity for participants to revise their previous answers based on the group’s overall response. This process continues until you reach a consensus.

2. Bayesian Network Analysis:

Bayesian networks are a type of probabilistic graphical model that uses Bayesian inference to compute the probability of various outcomes. They are particularly useful in complex systems for understanding the interdependencies between different factors.

In the context of research:

- **Appropriateness**: The use of Bayesian networks is fitting for analysing the complex interdependencies between various marketing strategies within the agri-food sector. Given the sector's complexity, with numerous interconnected factors affecting sustainability (such as supply chains, consumer behaviour, regulatory frameworks, etc.), a Bayesian network can help in understanding how changes in one aspect of the system might impact others.

- **Execution**: The construction of Bayesian networks would involve:
 1. Defining the nodes (key factors/variables) and edges (relationships) based on the sustainability criteria identified through the Delphi process.
 2. Gathering data (in this case, fictitious) that informs these relationships, likely through a combination of the case studies you've designed.
 3. Employing Bayesian statistical methods to calculate the probability distributions for each node, taking into account the information from its parents (direct influencers) in the network.

This model will allow you to simulate different scenarios, helping stakeholders see the potential impact of different strategies on sustainability goals.

The combination of the Delphi Technique and Bayesian Network Analysis enables a multi-faceted approach to understanding a highly dynamic and complex system. The Delphi Technique ensures your sustainability criteria are rooted in the expertise and consensus of diverse stakeholders, while the Bayesian Network Analysis allows for a nuanced understanding of the system's dynamics.
In summary, your study employs a **mixed-method approach** by combining both qualitative and quantitative techniques. The Modified Delphi Technique brings in qualitative data through expert opinions, while the Bayesian Network Analysis introduces a quantitative element by statistically analysing these insights or other numerical data related to the marketing strategies and their outcomes. This combination allows for a richer, more nuanced analysis and understanding of the complex dynamics within the Indian agri-food sector.

Table: A table to represent expert opinions gathered through the Modified Delphi Technique Across All Rounds

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Farmer, Punjab</td>
<td>Local community engagement; Traditional farming promotion</td>
<td>Increased focus on local community engagement; Emphasis on eco-friendly farming</td>
<td>Local community engagement with technology; Eco-friendly farming as a brand narrative</td>
<td>Emphasized the need for practical solutions and community trust.</td>
</tr>
<tr>
<td>Academician, Agricultural University</td>
<td>Use of modern technology for sustainable farming; Education programs for farmers</td>
<td>Integration of technology and traditional methods; Expanded education programs, including sustainability practices</td>
<td>Technology aiding sustainability; Comprehensive educational programs emphasizing sustainability</td>
<td>Highlighted the importance of education and the responsible use of technology.</td>
</tr>
<tr>
<td>Sustainability Advocate, Metropolitan City</td>
<td>Transparent supply chains; Consumer awareness campaigns</td>
<td>Detailed transparency in supply chains, with real-time tracking; Interactive consumer awareness campaigns using social media</td>
<td>Blockchain for supply chain transparency; Social media-driven awareness campaigns with success stories</td>
<td>Stressed on consumer trust through transparency and leveraging digital platforms for awareness.</td>
</tr>
<tr>
<td>Agri-food Business Owner, Gujarat</td>
<td>Efficient resource management; Expansion to e-commerce</td>
<td>Resource management with community participation; E-commerce with detailed product origins</td>
<td>Community-driven resource management initiatives; E-commerce platforms showcasing product journey and sustainability impact</td>
<td>Focused on operational efficiency, community involvement, and tapping into online markets.</td>
</tr>
</tbody>
</table>

Details on the Respondents' Survey Process:

1. **Selection of Experts:**
 - The experts were chosen based on their diverse experiences and knowledge within the agri-food sector. This diversity was crucial to garner a broad range of insights into sustainability in the Indian context.
 - Selection criteria included practical experience, academic knowledge, contributions to the field, and geographic location to ensure a wide representation.

2. **Round 1 - Gathering Initial Opinions:**
 - Experts were asked open-ended questions to gather a broad range of perspectives. This round aimed to understand the key strategies that experts believe are essential for promoting sustainability in the agri-food sector.
3. **Round 2 - Feedback and Intermediate Review:**

- Experts were presented with a summary of the first round's findings and asked to review and comment on each other's ideas (without being aware of the identities of other participants, preserving anonymity).
- They were encouraged to revise their previous responses based on the new information, promoting a movement towards consensus.

4. **Round 3 - Final Review and Consensus:**

- A final list of strategies, refined based on feedback from the second round, was presented to the experts. They were asked to provide their level of agreement with each strategy, offering them a chance for final revisions or comments.
- This round focused on reaching a consensus or identifying areas of enduring disagreement.

5. **Documentation and Analysis:**

- Responses from all rounds were meticulously documented, including the rationale behind each comment or revision. This transparency is crucial for readers and other researchers to understand the process and the foundation of the final consensus.
- Data was analysed to identify prevalent themes, areas of consensus, and points of divergence. These findings form the crux of the research's contributions to the field.

This structured approach ensures a systematic and transparent method of reaching a consensus on complex topics like sustainability strategies in the agri-food sector. The methodology's strength lies in its ability to refine and deepen understanding through iterative rounds of expert input.

4. **Results**

The objectives guiding this research focused primarily on identifying sustainable practices within the Indian agri-food sector and understanding the complex interdependencies of various marketing strategies aligned with these practices. Employing a robust methodology that included the Modified Delphi Technique followed by Bayesian Network Analysis, we derived comprehensive insights. These insights, supported by various tables, figures, and graphical representations, are detailed below.

Section 1: Delphi Technique Findings

The Modified Delphi Technique was instrumental in consolidating expert consensus on sustainability criteria. The iterative rounds of discussions led to a refinement of ideas and the emergence of key themes.

<table>
<thead>
<tr>
<th>Round</th>
<th>Number of Suggestions</th>
<th>Themes Emerged</th>
<th>Consensus Reached</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>50</td>
<td>15</td>
<td>No</td>
</tr>
<tr>
<td>2</td>
<td>30</td>
<td>10</td>
<td>Partial</td>
</tr>
<tr>
<td>3</td>
<td>-</td>
<td>-</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Table 1 illustrates the narrowing of suggestions and emerging consensus over the three rounds of the Delphi process.
Figure 1: Key Themes from Delphi Technique

Explanation:

Here's Figure 1, depicting the key themes from the Delphi Technique and their respective consensus percentages among the experts. The pie chart visually represents the proportion of each theme, providing clear insight into which areas garnered the most consensus. This chart is crucial for readers to instantly understand where the focus and priorities lie according to expert opinion in the context of sustainable practices in the Indian agri-food sector.

Through the Delphi rounds, experts converged on a set of sustainable practices deemed most impactful for the Indian agri-food sector. Notably, 'community engagement,' 'technological integration for sustainability,' and 'transparent supply chains' were identified as top priorities. The process underscored the necessity for multi-faceted strategies, balancing technological advances with traditional practices unique to Indian agriculture.

Section 2: Bayesian Network Analysis Insights

Post the Delphi Technique, Bayesian Network Analysis was employed, utilizing the established criteria to understand marketing strategies' interdependencies in this sector.

Figure 2: Bayesian Network Model
Figure 2 presents the complex Bayesian network model constructed for this analysis, depicting the probabilistic relationships between different marketing strategies. Each node represents a different marketing strategy, and the arrows (edges) indicate the directional influence one strategy might have on another.

This visual representation is crucial for understanding how various marketing strategies within the agri-food sector are interconnected, providing insights into how a change in one strategy potentially affects others. The model serves as a basis for more in-depth analysis, especially for determining optimal strategies that can enhance sustainable practices within the sector.

Table 2: Impact Analysis of Marketing Strategies

<table>
<thead>
<tr>
<th>Marketing Strategy</th>
<th>Direct Impact</th>
<th>Indirect Impact</th>
<th>Overall Influence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Community Engagement</td>
<td>High</td>
<td>Moderate</td>
<td>High</td>
</tr>
<tr>
<td>Technological Integration</td>
<td>Moderate</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>Transparent Supply Chains</td>
<td>Moderate</td>
<td>Moderate</td>
<td>Moderate</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Table 2 quantifies the influence of various marketing strategies on sustainability goals, considering both direct and indirect impacts as derived from the Bayesian Network Analysis.

Explanation:

The Bayesian analysis illuminated the multifaceted influences of various strategies. For instance, while 'community engagement' showed a high direct impact on sustainability, its indirect impact through other interconnected strategies was also significant, underscoring its centrality in sustainable agri-marketing. Conversely, 'transparent supply chains,' though vital, demonstrated a moderated overall influence, indicating potential dependence on other strategies for efficacy.

Table 3: List of Sustainability Criteria Identified

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Description (Provided by Experts)</th>
<th>Round Identified</th>
</tr>
</thead>
<tbody>
<tr>
<td>Community Engagement</td>
<td>Involving local communities in decision-making and operations.</td>
<td>1</td>
</tr>
<tr>
<td>Technological Integration</td>
<td>Adopting advanced technologies for efficient resource management.</td>
<td>2</td>
</tr>
<tr>
<td>Transparent Supply Chains</td>
<td>Ensuring visibility and accountability at every supply chain stage.</td>
<td>1</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Table 3 enumerates the sustainability criteria identified during the Delphi rounds, providing a brief description of each and indicating when they were introduced into the discussion.

Explanation: Table 3 is crucial as it provides readers with direct insights into what sustainability criteria were prioritized by the experts. It also helps trace the evolution of criteria across the rounds.

Figure 3: Expert Participation Rate by Round
Figure 3 above illustrates the participation rate of experts across the three rounds of the Delphi process. As depicted, there's a noticeable decline in participation from the first to the third round.

This graphical representation is crucial as it provides insights into the engagement level of the experts throughout the process. While some attrition is normal in multi-stage processes like the Delphi, understanding participation trends can help in assessing the reliability and validity of the consensus reached. It also assists researchers in identifying potential needs for methodological adjustments in future studies, such as strategies for maintaining or increasing expert engagement.

Table 4: Consensus Level on Various Criteria

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Round 1 (% Agreement)</th>
<th>Round 2 (% Agreement)</th>
<th>Round 3 (% Agreement)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Community Engagement</td>
<td>70%</td>
<td>85%</td>
<td>95%</td>
</tr>
<tr>
<td>Technological Integration</td>
<td>55%</td>
<td>80%</td>
<td>90%</td>
</tr>
<tr>
<td>Transparent Supply Chains</td>
<td>60%</td>
<td>82%</td>
<td>93%</td>
</tr>
</tbody>
</table>

Explanation: Table 4 is vital as it quantitatively demonstrates how opinions converged through the Delphi process. This progression underscores the effectiveness of this methodology in forging agreement.

Figure 4- Most Debated Sustainability Criteria

Figure 4 presents the distribution of the most debated sustainability criteria among experts during the initial stages of the Delphi process. It highlights the areas where consensus was more challenging to achieve, indicating the complexities and varying perspectives surrounding these specific topics.

This visual representation underscores the importance of these criteria and the necessity for in-depth exploration and discussion to reconcile differing expert opinions. The chart is instrumental in guiding future research and policy-making, ensuring that these contentious and critical areas receive adequate attention and resources.

5. Discussion

The synthesis of expert opinions through the Delphi Technique underscored several pivotal themes in the sustainable transformation of the Indian agri-food sector. Firstly, 'Community Engagement' emerged as a cornerstone, reaffirming the sector's communal roots and the importance of inclusive strategies. This finding resonates with the ethos of rural agricultural communities in India, where communal decision-making is ingrained. It suggests a need for policies that harness community dynamics, potentially leading to more resilient and accepted sustainable practices.
In contrast, ‘Technological Integration’ sparked extensive debate, indicative of the diverse viewpoints on technology's role in sustainability. While technology offers innovative solutions for efficiency and resource management, concerns likely revolve around accessibility, costs, and displacement of traditional practices. This dichotomy is not unique to India, as reflected in global discussions on sustainable agriculture, emphasizing the careful navigation required in integrating technology with respect for traditional knowledge and practices.

The importance of 'Transparent Supply Chains' highlights another critical aspect: accountability. The demand for transparency in sourcing, production, and distribution processes is climbing, driven by both global standards and a domestic push for food safety and quality. This study's emphasis on transparency aligns with global movements toward more responsible consumption and production, resonating with Sustainable Development Goals established by the United Nations.

These insights bear significant implications for stakeholders. For policymakers, the clear mandate for community-centric and transparent practices necessitates a re-evaluation of current policies and support structures. Programs incentivizing sustainable practices, education for farmers on eco-friendly methods, and platforms for stakeholder dialogue could be instrumental.

For practitioners — from farmers to agri-businesses — these findings suggest a need to pivot strategies, emphasizing community engagement and transparency. This shift could manifest in multiple ways, from adopting technologies that enable traceability to engaging local communities through cooperatives or inclusive business models.

While this research sheds light on crucial areas, limitations existed. The Delphi Technique, though valuable for consensus-building, often confronts challenges in participant retention and representation. The decrease in expert participation observed in successive rounds could skew consensus or overlook niche perspectives. Furthermore, the use of fictitious data in Bayesian Network Analysis, while necessary for this exploratory study, calls for caution in generalizing findings.

These limitations, however, pave the way for future research. Subsequent studies could expand the expert pool or employ longitudinal approaches to track opinion shifts over time. Additionally, real-world data application in Bayesian analysis could further validate and refine these insights, contributing to a more nuanced understanding that could shape India’s journey toward sustainable agri-food systems.

This research underscores the multifaceted nature of sustainability in India's agri-food sector, highlighting the need for a balanced, inclusive approach that respects both traditional wisdom and modern innovation. As India grapples with the dual challenges of ensuring food security and sustainable production in the face of climate change, these insights serve as a compass, guiding stakeholders toward practices that could reshape the agricultural landscape for future generations.

6. Conclusion

In conclusion, this research paper has undertaken a comprehensive exploration of eco-friendly marketing approaches in India's agri-food sector through the lens of sustainability metrics. The study aimed to address the evolving landscape of the Indian agri-food sector, driven by shifting consumer preferences, environmental consciousness, and the digital revolution.

Through a well-structured methodology that combined the Modified Delphi Technique and Bayesian Network Analysis, this research has yielded valuable insights. The Delphi Technique facilitated the consolidation of expert opinions and the identification of key sustainability criteria. These criteria emphasized the importance of community engagement, technological integration, and transparent supply chains as cornerstones for sustainable practices in the Indian agri-food sector.

The Bayesian Network Analysis, on the other hand, provided a nuanced understanding of the complex interdependencies between various marketing strategies within the sector. It quantified the impact of different strategies on sustainability goals, highlighting the centrality of community engagement and the significance of technological integration and transparent supply chains.

These findings have significant implications for stakeholders in the Indian agri-food sector. Policymakers should consider reevaluating policies to support community-centric and transparent practices, while practitioners need to pivot their strategies to emphasize community engagement and transparency in their operations.
However, it’s essential to acknowledge the limitations of this study, such as participant retention and the use of fictitious data in Bayesian analysis. These limitations point to avenues for future research to expand the expert pool, employ longitudinal approaches, and validate findings with real-world data.

In conclusion, this research provides a roadmap for businesses in India’s agri-food sector to adopt more sustainable marketing approaches. As the sector grapples with the challenges of ensuring food security and sustainability in the face of climate change, the insights from this study serve as a valuable compass, guiding stakeholders toward practices that can reshape the agricultural landscape for the better and contribute to a more sustainable and resilient future.

References

